

Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

A REVIEW ON SYNTHESIS AND REACTIONS OF CHROMONE AND CHROMENE DERIVATIVES USING THE MULTICOMPONENT REACTION SYSTEM

Figueroa-Valverde Lauro^{1*}, Rosas-Nexticapa Marcela², Alvarez-Ramirez Magdalena², Lopez-Ramos Maria¹.

¹Laboratorio de Farmacoquimica, Universidad Autonoma de Campeche, Avenida Ing. Humberto Lanz Cárdenas S/N, Colonia Ex Hacienda Kalá, C.P. 2408, Mexico. ²Laboratorio de Nutrición, Universidad Veracruzana, Xalapa, Médicos y Odontolo-gos s/n C.P. 91010, Unidad del Bosque, Xalapa Veracruz, México. *Correspondence: farmacoquimica@gmail.com

ABSTRACT

For several years, interest has increased in the organic chemistry and pharmaceutical sciences fields to develop new chromene derivatives. The aim of this research was to carry out a review of the synthesis and reactions of some chromene derivatives using multicomponent systems. It is noteworthy that reaction protocols imply conventional and non-conventional methods, in particular the use of different solvents and microwave irradiation conditions. It is noteworthy that protocol reactions could be used for decision-making in the development of new chromene derivatives.

KEYWORDS. Review, chromene, derivatives, synthesis,

INTRODUCTION

For several years, the pharmaceutical industry has shown great interest in the development of chromone and chromene derivatives.^{i-v} It is important to mention that different types of substituents bound to the chromone nucleus can play an important role in medicinal chemistry.^{vi,vii} Therefore, to design new chromone derivatives, several protocols have been used, including the multicomponent system and others. It is important to mention that multicomponent systems offer different benefits in some types of reactions, such as an increase in speed of reaction and a good yield of reaction product.^{viii-xiv}

Synthesis of chromone derivatives via a multicomponent system

A study^{xv} showed the synthesis of a series of chromene analogs using a multicomponent system from 2-hydroxybenzaldehyde derivatives (**1a-d**), ethyl acetoacetate (**2**), acetylenedicarboxylate (**3**), and isocyanide (**4**) (Scheme 1, Table 1). The proposed reaction mechanism involves the synthesis of 3-acetyl-chromen-2-one (2) from aldehyde derivatives and ethyl acetoacetate. Then, a zwitterionic intermediate, which was formed via the reaction of acetylenedicarboxylate with an isocyanide derivative, is bound to a double bond of 2. Finally, an intramolecular cyclization is carried out to form an imino-cyclopentene fragment involved in the chemical structure of chromanone derivative (3).

Scheme 1. Synthesis chromene derivatives (3a-3j). Conditions and reagents: i = toluene, piperidine, molecular sieves 4 Å, reflux, 2 h; ii = reflux, 5 h.

Entry	R ₁	\mathbf{R}_2	product	Yield (%)
1	Н	<i>tert</i> -butyl	5a	73
2	Н	cyclohexyl	5b	75
3	Н	tetramethylbutyl	5c	65
4	5-Br	<i>tert</i> -butyl	5d	74
5	5-Br	cyclohexyl	5e	75
6	5-Br	tetramethylbutyl	5f	64
7	5-NO ₂	<i>tert</i> -butyl	5g	58
8	5-NO ₂	cyclohexyl	5h	54
9	5-NO ₂	tetramethylbutyl	5i	52
10	3-NO ₂	<i>tert</i> -butyl	5j	59
11	3-NO2	cyclohexyl	5k	63
12	3-NO2	tetramethylbutyl	51	53

Table 1. Products obtained (**5a-5l**) using the multicomponent system (aldehyde derivatives (**1a-d**), ethyl acetoacetate, acetylenedicarboxylate, and isoniacide).

Other studies have shown the synthesis of 3-(methylthio)-4H-chromenone from ohydroxyaryl acetophenone and rongalite in the presence of dimethyl sulfoxide and iodine.^{xvi} The possible mechanism involves the reaction of 1-(2-Hydroxy-phenyl)-ethanone (**4**) with iodine to form the compound 2-OH- α -iodo acetophenone, which is then converted into (2-(2hydroxyphenyl)-2-oxoethyl)dimethyl-sulfonium iodine in the presence of dimethyl sulfide (generated from the reduction of DMSO). Following, the sulfonium iodide in the presence of HCHO (generated via rongalite-CuO) can produce 1-(2-Hydroxy-phenyl)-2-methyl-sulfanylpropenone as an intermediary. Subsequently, an intramolecular nucleophilic cyclization is carried out to form (3-methylsulfanyl-chroman-4-one), which undergoes an oxidative aromatization to form a chromone derivative **8** (Scheme 2).

Scheme 2. Synthesis a 3-(methylthio)-4H-chromenone (8). *Conditions and reagents: iii* = I_2 , DMSO (7), 1,8-Diazabicyclo 5.4.0 undec-7-ene (DBU), CuO, 100 $^{\circ}$ C, 3h.

F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025

Another report^{*xvii*} showed the preparation of a series of chromene derivatives via a multicomponent system (aromatic aldehydes, α -cyanomethylene, and α -naphthol) using the single-step continuous flow protocol on a ThalesNano H-Cube ProTM. The authors suggest that the reaction mechanism involves the reaction of an aldehyde derivative with malononitrile in the presence of DBU to form an arylidene-malonitrile via the Knoevenagel condensation.^{*xviii-xxii*} Then, arylidene-malononitrile reacted with α -naphthol to form the chromone derivative (Table 2 and Scheme 3).

Table 2.	Chromone	derivatives	obtained	(12a-12j)	using	multicomponent	system	(aromatic
aldehydes	s, α-cyanom	ethylene, ar	nd α-naph	thol).				

Entry	Ar	Product	Yield (%)	m.p. (°C)
1	C_6H_5	12a	95	215-217
2	$4-CH_3OC_6H_4$	12b	93	182-183
3	$4-ClC_6H_4$	12c	92	232-234
4	2-Furanyl	12d	87	171-172
5	2-Thienyl	12e	91	192-194
6	$4-BrC_6H_4$	12f	94	241-243
7	$3-ClC_6H_4$	12g	88	228-230
6	$3-NO_2C_6H_4$	12h	94	215-216
9	$4-NO_2C_6H_4$	12i	96	237-238

Scheme 3. Synthesis of chromone derivatives (**12a-j**). Conditions and reagents: iv = aldehyde derivatives (**9a-j**), malononitrile (**10**), α -naphthol (**11**), and DBU, 2-methyl-tetrahydrofuran.

Furthermore, a study^{*xxiii*} showed the synthesis of a 2-amino-3-cyano-4-phenyl-4Hbenzo[h]chromene via a multicomponent system (benzaldehyde, malononitrile, and 1napthol) under different conditions (Scheme 4, Table 3). The reaction product was higher using the *t*-ZrO₂ catalyst in the presence of water. The authors suggest a reaction mechanism that involves a Knoevenagel condensation to produce 2-phenylidenemalononitrile and, subsequently, a Michael addition^{*xxiv-xxvii*} to 1-napthol, followed by tautomerization and intramolecular cyclization to form the chromone derivative.

Scheme 4. Synthesis of 2-amino-chromene derivative (14). Conditions and reagents: v = benzaldehyde (12), malononitrile (9), 1-napthol (10), t-ZrO2/H₂O, rt.

Entry	Catalyst	Solvent/Conditions	Time (min)	Yield (%)
1	t-ZrO ₂ NPS	H ₂ O/80 ^O C	30	92
2	t-ZrO ₂ NPS	H ₂ O/rt	240	-
3	No catalyst	H ₂ O/80 ^O C	240	-
4	t-ZrO ₂ NPS	CH ₃ CN/80 ^O C	60	77
5	t-ZrO ₂ NPS	Toluene/80 ^O C	60	62
6	t-ZrO ₂ NPS	DMF/80 ^O C	60	60
7	Bulk ZrO ₂ NPS	H ₂ O/80 ^O C	60	41
8	m-ZrO ₂ NPS	H ₂ O/80 ^O C	60	52
9	Fe ₃ O ₄ NPS	H ₂ O/80 ^O C	60	57
10	SiO ₂ NPS	H ₂ O/80 ^O C	60	51
11	CuO NPS	H ₂ O/80 ^O C	60	79
12	ZnO NPS	H ₂ O/80 ^O C	60	66

Table 3. Different conditions of reaction to produce 2-amino-3-cyano-4-phenyl-4H-benzo[h]chromene (14).

rt = room temperature; NPS = nanoparticles

Besides, a study showed that aldehyde derivatives (**15a-15l**), malonitrile and α -naphtol reacted in the presence of N,N-dimethylamino-ethylbenzyldimethyl-ammonium chloride under solvent-free condition to form the compound 2-Amino-chromene-3-carbonitrile analogs (**16a-16l**).^{xxviii} The authors indicate that aromatic aldehydes that contain electron-donating groups (hydroxyl, alkoxy or methyl), require higher reaction time compared to electron-accepting groups (nitro, haluro) bound to aromatic ring (Scheme 5 and Table 4). Furthermore, the data indicates that to carry out the reaction the presence of an ionic liquid catalyst is required.

Scheme 5. Synthesis of 2-Amino-chromene-3-carbonitrile (**16a-16l**). *Conditions and reagents*: vi = N,N-dimethylaminoethylbenzyldimethylammonium chloride, 80 °C, 35 min.

		•		· ·	
Entry	Aryl	Product	Time (min)	Yield (%)	-
1	C_6H_5	16a	35	91	
2	$4-Cl-C_6H_4$	16b	30	93	
3	$2-Cl-C_6H_4$	16c	100	70	
4	2,4-Cl-C ₆ H ₄	16d	50	82	
5	$4-NO_2-C_6H_4$	16e	40	95	

Table 4. Different anyl groups involved in the synthesis of 2-chromene derivatives (16a-16l).

6	$3-NO_2-C_6H_4$	16f	80	94
7	$\begin{array}{c} \text{4-Me}_2\text{-N-}\\ \text{C}_6\text{H}_4 \end{array}$	16g	60	53
8	4-Me-C ₆ H ₄	16h	100	82
9	$4-OH-C_6H_4$	16i	40	46
10	$4-\text{MeO-C}_6\text{H}_4$	16j	120	65
11	3-MeO-4OH- C ₆ H ₃	16k	130	62
12	2-Furanyl	161	120	56

F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025

On the other hand, some chromone derivatives have been prepared using non-conventional methods such as microwave irradiation.^{xxix-xxxiii} For example, Lambat in 2018 showed the synthesis of a series of chromone derivatives (**19a-19k**) using the multicomponent system (aldehyde derivatives (**17a-17k**), dimedone, and malonitrile) through microwave irradiation assisted (Scheme 6).^{xxxiv} This study shows that variations in functional groups at different positions bound to aromatic rings can influence the performance of a product (Table 5).

R = -H, -F, -Cl, -CH₃, -OCH₃, -NO₂, -OH

Scheme 6. Synthesis of chromone-carbonitrile derivative (19a-19k). Conditions and reagents: vii = scolecite, EtOH/H₂O, microwave irradiation.

Table 5.	Cromonone	derivatives	(19a-19k)	obtained	from	aldehyde	derivatives,	dimedone,
and malo	nitrile.							

Entry	Aldehyde derivative	Product	Time (min)	Yield (%)
1	benzaldehyde	19a	35	91
2	4-Fluoro- benzaldehyde	19b	30	93
3	4-Methyl- benzaldehyde	19c	100	70
4	4-Methoxy- benzaldehyde	19d	50	82
5	2,5- Dimethoxy- benzaldehyde	19e	40	95
6	4-Chloro- benzaldehyde	19f	80	94
7	2-Chloro- benzaldehyde	19g	60	53

8	3-Chloro- benzaldehyde	19h	100	82
9	3-Nitro- benzaldehyde	19i	40	46
10	4-Nitro- benzaldehyde	19j	120	65
11	4-Hydroxy- benzaldehyde	19k	130	62

Another study indicates the synthesis of a chromone derivative from an analogous benzalaldehyde (12), α -naphthol (13), and malononitrile (9) in an aqueous medium using microwave radiation (Schem 7).^{xxxv} The proposed mechanism involves the addition of aldehyde to malononitrile through Knoevenagel condensation to form propanenitrile, which reacts with α -naphthol via Michael addition. Finally, there is an intramolecular cyclization to produce a chromone derivative (14).

Scheme 7. Synthesis of chromone-carbonitrile derivative (14). Conditions and reagents: viii = NaTPS, aq. Medium, microwave irradiation, 5 min.

Besides other report (Schem 8 and Table 6) indicates the synthesis of 4H-chromene derivatives (**23a-23l**) using a multicomponent system (Aryloxyquinoline-3-carbaldehyde (**21a-21l**) malononitrile (**9**) and cyclohexane-1,3-dione (**22**).^{*xxxvi*} The reaction mechanism suggested may involve the Knoevenagel condensation of aldehyde and malononitrile to give heterylidenenitrile derivative followed by Michael addition of **22** to heterylidenenitrile to produce the 4-chromone derivative.

Scheme 8. Synthesis of two 4-chromone derivative (23a-23x). *Conditions and reagents: ix* = Ethanolic NaOH, microwave irradiation, 350 W, 170–190 s.

ae	rivatives (23a	-231).			
	Entry	R ₁	\mathbf{R}_2	R ₃	Yield (%)
	23a	Н	Н	Н	73
	23b	Н	CH_3	Н	78
	23c	Н	OCH ₃	Н	80
	23d	Н	F	Н	66
	23e	CH ₃	Н	Н	76
	23f	CH ₃	CH_3	Н	80
	23g	CH ₃	OCH ₃	Н	84
	23h	CH ₃	F	Н	64
	23i	OCH ₃	Н	Н	67
	23j	OCH ₃	CH_3	Н	80
	23k	OCH ₃	OCH ₃	Н	88
	231	OCH_3	F	Н	70

Table 6. Different functional groups involved in chemical structure of 4-chromene derivatives (**23a-23l**).

Reaction of chromone derivatives via multicomponent reactions system.

Several reactions have been used to prepare some compounds from chromone derivatives^{*xcxvii-xLii*}; for example, a study displayed the preparation of (R,E)-6-methyl-2-((S,Z)-7-methyl-9-oxo-3-((2,4,4-trimethylpentan-2-yl)imino)-3,9-dihydro-1H-furo-[3,4-b]- chromen-1-yl]-4-oxochroman-3-ylidene)methyl acetate (**24**) using the multicomponent system (6-Methyl-4-oxo-4H-chromene-3-carbaldehyde (**21**), acetyl acetate (**22**), 2-isocyano-2,4,4-trimethylpentane (**23**)) under different conditions.^{*xLiii*} In Table 6, there are several solvents used for this reaction; it should be noted that methylene chloride at 25 °C and 72 h showed good yielding (Schem 9 and Table 7).

Scheme 9. Synthesis a chromane derivative (24). Conditions and reagents: x = see Table 7.

	F			
Entry	Solvent	Temp (°C)	Time (h)	Yield (%)
1	CH_2Cl_2	25	24	43
2	CHCl ₃	25	24	38
3	CH ₃ CN	25	24	32
4	THF	25	24	35
5	DMSO	25	24	22
6	DMF	25	24	29

Table 7. Different solvents to produce chromone derivative (24).

7	Toluene	25	24	11
8	CH ₃ OH	25	24	ND
9	CH ₃ CH ₂ OH	25	24	ND
10	CH_2Cl_2	25	48	58
11	CH_2Cl_2	25	72	67
12	CH_2Cl_2	25	96	67
13	CH_2Cl_2	reflux	72	18
14	THF	reflux	72	10

F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025

ND = not detected.

Other study showed (Scheme 10) the preparation of two amide derivatives (**26** and **27**) via multicomponent system (chromone-3-carboxaldehyde (**25**), 2,6-dimethylaniline, 4-nitrophenyl)acetic acid, and 2,6-dimethylphenyl isocyanide). The authors suggest that 2-(2,6-dimethyl-N-[2-(4-nitrophenyl)acetyl]anilino)-N-(2,6-di-methylphenyl)-2-(4-oxo-chromen-3-yl)acetamide was produced via an Ugi-4CR reaction.^{xLiv-xLvii} For the second product ((3Z)-3-[(2,6-dimethylanilino)-methylene]-N-(2,6-dimethyl-phe-nyl)-N-[2-(4-nitrophenyl)acetyl]-4-oxo-chromane-2-carboxami- de), the reac-tion mechanism involve an imino group formation. Then, an addition of 6-dimethylphenyl isocyanide to double bond and subsequently a nucleophilic addition of the carboxylic acid anion to cyanide group and finally an intramolecular rearrangement to form amide derivatives.^{xLviii}

Scheme 10. Synthesis of two amide analogs (26 and 27). Conditions and reagents: xi = chromone-3-carboxaldehyde (25), 2,6-dimethylaniline, 4-nitro-phenyl) acetic acid, 2,6-dimethylphenyl isocyanide,

Another study carried out by Zhu and coworkers (2019), showed the synthesis of tertbutyl(2'S,3S,3'S)-4-oxo-3',5'-diphenyl-spiro-[chromane-3,4'-pyrrolidine]-2'-carboxylate (30) using a three-component system (3-Benzylidene-chroman-4-one (28), benzaldehyde (13), and amino-acetic acid tert-butyl ester (29) in the presence of some phosphonium salts (Scheme 11). It is important to mention that yield was higher using the 3d phosphonium salt.^{*xLix*}

Scheme 11. Synthesis of a spiro-pyrrolidine derivative (30). Conditions and reagents. $xii = CsCO_3$, c-pentene, 3 Å molecular sieves, rt, 48 h.

Other data (Scheme 12) displayed the reaction of cyclohexylisocyanide (**33**) and diethyl azodicarboxylate (**32**) with 4-Oxo-4H-chromene-3-carbaldehyde (**31**) to form the compound ethyl N-[(2-cyclohexyl-3,9-dioxo-1H-chromeno[2,3-c]pyrrol-1-yl)-amino]-N-ethoxycarbo-nyl-carbamate (**34**). The proposed reaction mechanism indicates that isoniacide is added to the double bound of the chromone nucleus, followed by an intramolecular cyclization to form an amino group as an intermediate, which serves to produce an aminofurochromene. Then there is an electrophilic attack from the double link of furan to the nitrogen of ethyl ethyl (NE)-N-ethoxycarbonylimino carbamate to form an azodicarboxylate. Finally, this intermediate gives rise to the formation of the Chromeno-pyrrol derivative.^L

Scheme 12. Synthesis of a chromeno-pyrrol derivative (34). Conditions and Reagents: xiii = 4-Oxo-4H-chromene-3-carbaldehyde (31), diethyl azodicarboxylate (32), cyclohexylisocyanide (33), toluene, 80 °C, 12 h. (32)

Besides, a study (Scheme 13) showed the synthesis of the compound N^2 -cyclohexyl-2-(4oxo-chromen-3-yl)- N^1 , N^1 -diphenyl-ethane-1,1,2-tricarboxamide (**34**) via a multicomponent system (4-oxo-chroman-3-carbaldehyde (**25**), Meldrum's acid (**31**), isocyano-cyclohexane (**32**), and aniline (**33**)). The reaction mechanism involves the addition of Meldrum acid to formylchromone via Knoevenogel condensation to form the compound 2,2-dimethyl-5-[(4oxochromen-3-yl)methyl-ene]-1,3-dioxane-4,6-dione, followed by a [1 + 4] cycloaddition reaction with isocyano-cyclohexane to produce an iminolactone. Then, this compound reacted with aniline to produce an amide group. Finally, there is a nucleophilic attack of a second molecule of arylamine on the activated carbonyl of dihydrofuran-2-one, followed by opening the ring to form a chromone derivative.^{Li}

Scheme 13. Preparation of N2-cyclohexyl-2-(4-oxochroman-3-yl)-N1,N1-diphenyl-ethane-1,1,2-tricarboxamide (34). *Conditions and reagents: xiv* = 4-Oxo-chroman-3-carbaldehyde (25), Meldrum's acid (31), isocyano-cyclohexane (32), and aniline (33), anhydrous dichloromethane, rt, 3 h.

On the other hand, Akbarzadeh and coworkers (2014) showed the reaction of from chromone-3-carbaldehyde (25), aniline (33), cyclohexyl isoniacide (32), and 2-azidoacetic acid (35) via Ugi reaction to produce the compound 5-(Cyclohexylamino)-6-(4-oxo-4H-chromen-3-yl)-1-(p-tolyl)-3,6-dihydropyrazin-2(1H)-one (36) (Scheme 14).^{*Lii*}

Scheme 14. Synthesis of a 6-(4-oxo-chromen-3-yl)-dihydropyrazinone (36). Conditions and reagents: xv = tetrahydrofurane, rt, 24 h

In addition, a study displayed the synthesis of 1-(2-methyl-3,4-diphenyl-4*H*-chromeno[3,4-b]pyrrol-1-yl)ethenone from 3-Nitro-2-phenyl-2H-chromene, Pentane-2,4-dione, and aniline under microwave irradiation (Scheme 15 and Table 8). It is noteworthy that this reaction presents a good yield (90%) using FeCl₃/toluene system.^{Liii}

Scheme 15. Synthesis of a 6-(4-oxo-chromen-3-yl)- pyrazinone (40). Conditions and reagents: $xvi = FeCl_3$, toluene, microwave irradiation (60W), 90 °C, 15 min.

Entry	Catalyst	Solvent	MW	Temp.	Time (min)	Yield (%)
1	SiO ₂	THF	30W	60	10	55
2	SiO ₂	THF	30W	60	20	50
3	AlO ₃	THF	30W	70	20	32
4	AlO ₃	Toluene	30W	90	20	40
5	PTSA	Toluene	30W	90	20	42
6	PTSA	THF	30W	80	20	35
7	FeCl ₃	Toluene	30W	90	10	88
8	ZnCl ₂	Toluene	30W	80	20	70
9	TsOH/H ₂ O	DMSO	30W	80	20	38
10	AcOH	DMSO	30W	80	20	45
11	AcOH	Toluene	30W	80	20	47
12	I_2	DMSO	30W	80	20	42
13	FeCl ₃	Toluene	30W	60	5	35
14	FeCl ₃	Toluene	40W	70	10	45
15	FeCl ₃	Toluene	50W	80	15	62
16	FeCl ₃	Toluene	60W	90	15	90
17	FeCl ₃	Toluene	70W	90	15	80
18	FeCl ₃	Toluene	80W	100	15	75

 Table 8. Different solvents to produce chromone derivative (40)

Finally, a study displayed the preparation of 4-(4-Methylene-4H-chromen-3-yl)-5-phenyl-5Hfuran-2-one (**45**) from 3,3-Dimethylamino-1-(2-hydroxy-phenyl)-propenone (**41**), 2,2-Dihydroxy-1-phenyl-etha-none (**42**), and 2,2-Dimethyl-[1,3]dioxane-4,6-dione (**44**) using several solvents (Scheme 16 and Table 9). It is important to note that among the employed solvents, the best results were achieved using MeCN to room temperature for 48 h. The reaction mechanism involves the addition of Meldrum acid to arylglyoxal. Subsequently, the enaminone reacts with arylglyoxal to form the imine adduct, followed by an intramolecular cycle by reaction of the imine and the hydroxyl group to produce a salt that contains a fragment of 4H-chromen-4-one. Subsequently, this compound in acidic medium gives rise to a cyclization which includes enolization of carbonyl moiety and interaction of hydroxy group with Meldrum's acid fragment to form a chromone derivative.^{Liv}

Scheme 16. Synthesis of a 4-(4-Methylene-4H-chromen-3-yl)-5-phenyl-5H-furan-2-one. *Conditions and reagents: xvii* = see Table 9.

 	r-r-r			
Entry	Solvent	Time (h)	Temp (°C)	Yield (%)
1	MeCN	2	reflux	15
2	MeCN	8	reflux	22
3	MeCN	24	reflux	17
4	MeCN	8	-	25
5	MeCN	24	-	41
6	MeCN	48	-	52
7	MeCN	60	-	50
8	EtOH	48	-	23
9	Dioxane	48	-	42
10	THF	48	-	33
11	Toluene	48	-	25
12	CH_2Cl_2	48	-	44
13	MeCN	48	Et ₃ N	36
14	MeCN	48	DBU	15
15	MeCN	48	DABCO	22

Table 9. Solvent used to preparation of chromone derivative (44).

CONCLUSIONS

The multicomponent reactions system is a chemical tool to develop several compounds; these reactions can provide high yields and high reaction speeds and can be used for the synthesis and reactions of different chromone derivatives. It is important to mention in this review that several reaction protocols were analyzed, which involve conventional and non-conventional

F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025

methods, in particular the use of different solvents and microwave irradiation conditions. It is noteworthy that these data can be used to make decisions in the development of new chromone derivatives.

ACKNOWLEDGEMENTS

None

Keywords: Chromone • derivative • molonitrile • aldehyde • ethyl acetoacetate

CONFLICT OF INTEREST

The authors declare no conflict of interest

REFERENCES

i	Mohsin, N., Irfan, M., Hassan, S., & Saleem, U. (2020). Current strategies in development of new chromone derivatives with diversified pharmacological activities: A review. <i>Pharmaceutical Chemistry</i> <i>Journal</i> , 54, 241-257
ii	Arvindekar, S., Mohole, S., Patil, A., Mane, P., Arvindekar, A., Mali, S. & Sharma, S. (2023). Molecular docking, QSAR, pharmacophore modeling, and dynamics studies of some chromone derivatives for the discovery of anti-breast cancer agents against hormone dependent breast cancer. <i>Journal of Biomolecular Structure and Dynamics</i> , <i>41</i> (24), 14757-14770.
iii	Madhav, H., Jameel, E., Rehan, M., & Hoda, N. (2022). Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics. <i>RSC</i> <i>Medicinal Chemistry</i> , <i>13</i> (3), 258-279.
iv	Mansour, W. Fettouhi, M. El-Ali, B. <i>ACS Omega</i> . (2020). Regioselective synthesis of chromone via cyclocarbonylative Sonogashira copupling catalyzed by high active Bridged-bis(N-heterocyclic carbene)palladium(II) xomplexes. <i>5</i> (50), 32515-32529.
v	Zarnegar, Z., & Safari, J. (2016). Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multicomponent strategy. <i>New Journal of Chemistry</i> , <i>40</i> (9), 7986-7995.
vi	Benny, A. T., Arikkatt, S. D., Vazhappilly, C. G., Kannadasan, S., Thomas, R., Leelabaiamma, M. S., & Shanmugam, P. (2022). Chromone, a privileged scaffold in drug discovery: Developments in the synthesis and bioactivity. <i>Mini Reviews in Medicinal Chemistry</i> , <i>22</i> (7), 1030-1063.
vii	Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E., & Borges, F. (2014). Chromone: a valid scaffold in medicinal chemistry. <i>Chemical</i> <i>reviews</i> , <i>114</i> (9), 4960-4992.
viii	Rodrigues, M. O., Eberlin, M. N., & Neto, B. A. (2021). How and why to investigate multicomponent reactions mechanisms? A critical review. <i>The Chemical Record</i> , <i>21</i> (10), 2762-2781.
ix	Neto, B., Rocha, R., & Rodrigues, M. (2021). Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. <i>Molecules</i> , 27(1), 132.
Х	Ganem, B. (2009). Strategies for innovation in multicomponent reaction

	F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025
	design. Accounts of chemical research, 42(3), 463-472.
xi	Nenajdenko, V. G. (2020). Access to molecular complexity.
	Multicomponent reactions involving five or more components. <i>Russian</i>
	Chemical Reviews, 89(11), 1274.
xii	De Graaff C., Ruijter E., & Orru R. V (2012). Recent developments in
	asymmetric multicomponent reactions <i>Chemical Society Reviews</i> 41(10)
	3969-4009
xiii	Jiang B Rajale T Wever W Tu S I & Li G (2010)
AIII	Multicomponent reactions for the synthesis of heterocycles <i>Chemistry-An</i>
	Asian Journal 5(11) 2318-2335
viv	Mironov M Δ (2010) Multicomponent reactions and combinatorial
ліv	chemistry Russian Journal of Canaral Chamistry 80, 2628-2646
V V I	Chandi M. Chomi A. T. & Kubicki M. (2012) Synthesis of
ΧV	onandi, M., Ononni, A. T., & Kubicki, M. (2015). Synthesis of
	reactions. The Journal of Oreguin Chamistry, 78(6), 2611-2616
:	Wang M. Tang D. C. Ma, I.T. Wang Z. X. Xiang I.C. Wu X.D.
XVI	Wally, M., Tally, D. C., Ma, J. T., Wally, Z. A., Alarig, J. C., Wu, T. D.,
	& WU, A. A. (2019). 12/DIMSO-integrated multicomponent reaction of o-
	nydroxyaryi metnyi ketones, rongante, and DMSO: access to C3-
	suffenyiated chromones. Organic & Biomolecular Chemistry, 17(6), 1555-
::	1341. Vaddula D. D. Valla S. & Consolar M. A. (2015) An afficient and more
XV11	vaduula, B. R., falla, S., & Gonzalez, M. A. (2015). An efficient and more
	sustainable one-step continuous-now multicomponent synthesis approach
:	to chromene derivatives. Journal of Flow Chemistry, 5(5), 1/2-1/7.
XV111	Appaiuri, J. N., Kaui, K., Phoon, B. L., Baiagarawa, S. M., Din, I. U.,
	Selvaraj, M., & Ramalingam, R. J. (2021). A review of the recent progress
	on heterogeneous catalysts for Knoevenagel condensation. <i>Dalton</i>
	Transactions, 50(13), 4445-4469.
X1X	Irotzki, K., Hoпmann, M. M., & Ondruschka, B. (2008). The
	Knoevenagel condensation at room temperature. Green Chemistry, 10(8),
XX	Cope, A. C. (1937). Condensation reactions. I. The condensation of
	ketones with cyanoacetic esters and the mechanism of the Knoevenagel
	reaction. Journal of the American Chemical Society, 59(11), 2327-2330.
XX1	Appaturi, J. N., Katti, K., Phoon, B. L., Batagarawa, S. M., Din, I. U.,
	Selvaraj, M., & Ramalingam, R. J. (2021). A review of the recent progress
	on heterogeneous catalysts for Knoevenagel condensation. Dalton
	Iransactions, 50(13), 4445-4469.
XX11	vekariya, R. H., & Patel, H. D. (2014). Recent advances in the synthesis
	of coumarin derivatives via Knoevenagel condensation: A
	review. Synthetic Communications, 44(19), 2/56-2/88.
XX111	Saha, A., Payra, S., & Banerjee, S. (2015). On water synthesis of pyran–
	chromenes via a multicomponent reactions catalyzed by fluorescent t-ZrO
	2 nanoparticles. <i>RSC advances</i> , 5(123), 101664-1016/1.
XX1V	Oare, D. A., & Heathcock, C. H. (1989). Stereochemistry of the Base-
	Promoted Michael Addition Reaction. <i>Topics in Stereochemistry</i> , 19, 227-
	40/.
XXV	Enders, D., Wang, C., & Liebich, J. X. (2009). Organocatalytic
	asymmetric aza-Michael additions. <i>Chemistry–A European</i>
	Journal, 15(42), 11058-11076.

	F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025
xxvi	Peng, F. Z., Shao, Z. H., Fan, B. M., Song, H., Li, G. P., & Zhang, H. B. (2008). Organocatalytic enantioselective Michael addition of 2, 4-pentandione to nitroalkenes promoted by bifunctional thioureas with central and axial chiral elements. <i>The Journal of Organic Chemistry</i> , 73(13), 5202-5205.
xxvii	Krause, N., & Hoffmann-Röder, A. (2001). Recent advances in catalytic enantioselective Michael additions. <i>Synthesis</i> , 2001(02), 0171-0196.
xxviii	Chen, L. Huang, X. Li, Y. Zhou, M. Zheng, W. (2009). <u>A one-pot</u> multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by <i>N</i> , <i>N</i> -dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition. <i>Monatshefte Für Chemie</i> . 140, 45- 47.
xxix	Molaei, H. R., & Sadeghi, B. (2019). Microwave Assisted Multi- component Synthesis of 4Hchromene Derivatives by Nano-coconut Shell- BF3 as a New Heterogeneous Catalyst. <i>Journal of Applied Chemical</i> <i>Research</i> , 13(1), 85-96.
XXX	Nope, E., Sathicq, Á. G., Martínez, J. J., Rojas, H., Macías, M. A., Castillo, J. C., & Romanelli, G. (2022). Solvent-free microwave-assisted multicomponent synthesis of 4H-chromenes using Fe3O4-based hydrotalcites as bifunctional catalysts. <i>ChemistrySelect</i> , 7(10), e202104360.
xxxi	Poursattar Marjani, A., Khalafy, J., Eslamipour, P., & Ahmadi Sabegh, M. (2019). Synthesis of a New Series of 4H-benzo [h] chromenes by a Multicomponent Reaction under Solvent-Free Microwave Conditions. <i>Iranian Journal of Chemistry and Chemical Engineering</i> 38(4), 51-57
xxxii	Febriantini, D. Cahyana, A. Yunarti, T. (2019) <u>A microwave assisted</u> , <u>Fe3O4/Camphor-catalysed threecomponent synthesis of 2-amino-4H-</u> <u>chromenes and their antibacterial and antioxidant activity</u> . <i>IOP Conf. Ser:</i> <i>Mat. Sci. Eng.</i> 2019, 509(1), 012036)
xxxiii	<i>xxxiii</i> . Kumbhar, A., Jadhav, S., Shejwal, R., Rashinkar, G., & Salunkhe, R. (2016). Application of novel multi-cationic ionic liquids in microwave assisted 2-amino-4 H-chromene synthesis. <i>RSC advances</i> , <i>6</i> (23), 19612-19619.
xxxiv	Lambast, T. J. Chin. Adv. Mater. Soc. 2018 6, 134-144
XXXV	Gaikwad, P., & Kamble, S. (2020). Microwave enhanced green and convenient synthesis of 2-amino-4H-chromenes in aqueous hydrotropic medium. <i>Current Research in Green and Sustainable Chemistry</i> , <i>3</i> , 100014.
xxxvi	Sangani, C. B., Shah, N. M., Patel, M. P., & Patel, R. G. (2013). Microwave-assisted synthesis of novel 4 H-chromene derivatives bearing 2-aryloxyquinoline and their antimicrobial activity assessment. <i>Medicinal</i> <i>Chemistry Research</i> , 22, 3831-3842.
xxxvii	Gao, Y., Ren, Q., Wu, H., Li, M., Wang, J. (2010). Enantioselective heterocyclic synthesis of spiro chromanone–thiochroman complexes catalyzed by a bifunctional indane catalyst. Chemical Communications, 46, 9232-9234
xxxviii	Liu, T., He, Z., & Wang, C. (2011). Highly efficient construction of spirocyclic chromanone–pyrrolidines via Cu (i)/TF–BiphamPhos-

	F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025
	catalyzed asymmetric 1, 3-dipolar cycloaddition. <i>Chemical Communications</i> , 47(34), 9600-9602.
xxxix	Santos, C. M., Silva, V. L., & Silva, A. M. (2017). Synthesis of chromone- related pyrazole compounds. <i>Molecules</i> , 22(10), 1665.
xl	Benny, A. T., Arikkatt, S. D., Vazhappilly, C. G., Kannadasan, S., Thomas, R., Leelabaiamma, M. S., & Shanmugam, P. (2022). Chromone, a privileged scaffold in drug discovery: Developments in the synthesis and bioactivity. <i>Mini Reviews in Medicinal Chemistry</i> , 22(7), 1030-1063.
xli	Gomes, A., Neuwirth, O., Freitas, M., Couto, D., Ribeiro, D., Figueiredo, A. G., & Lima, J. L. (2009). Synthesis and antioxidant properties of new chromone derivatives. <i>Bioorganic & medicinal chemistry</i> , <i>17</i> (20), 7218-7226.
xlii	Demetgül, C., & Beyazit, N. (2018). Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. <i>Carbohydrate polymers</i> , <i>181</i> , 812-817.
xliii.	Teimouri, M. B., Batebi, E., Mohammadnia, S., & Khavasi, H. R. (2021). Water-controlled selectivity switch in a multicomponent reaction: One-pot stereoselective synthesis of (acyloxymethylidene) chromonyl- furochromones and amido-(acyloxymethylidene) chromones. <i>Tetrahedron</i> , <i>96</i> , 132374.
xliv	Li, X., Zarganes-Tzitzikas, T., Kurpiewska, K., & Dömling, A. (2023). Amenamevir by Ugi-4CR. <i>Green Chemistry</i> , 25(4), 1322-1325.
xlv	Wessjohann, L. A., Neves Filho, R. A., & Rivera, D. G. (2012). Multiple multicomponent reactions with isocyanides. <i>Isocyanide Chemistry: Applications in Synthesis and Material Science</i> , 233-262.
xlvi	Cristau, P., Vors, J. P., & Zhu, J. (2001). A rapid access to biaryl ether containing macrocycles by pairwise use of Ugi 4CR and intramolecular SNAr-based cycloetherification. <i>Organic Letters</i> , <i>3</i> (25), 4079-4082.
xlvii	Fouad, M. A., Abdel-Hamid, H., & Ayoup, M. S. (2020). Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. <i>RSC advances</i> , 10(70), 42644-42681.
xlviii	Lei, J., Li, Y., He, L. J., Luo, Y. F., Tang, D. Y., Yan, W., & Xu, Z. G. (2020). Expeditious access of chromone analogues via a Michael addition- driven multicomponent reaction. <i>Organic Chemistry Frontiers</i> , 7(8), 987-992.
xlix	Zhu, L., Ren, X., Liao, Z., Pan, J., Jiang, C., & Wang, T. (2019). Asymmetric three-component cyclizations toward structurally spiro pyrrolidines via bifunctional phosphonium salt catalysis. <i>Organic</i> <i>Letters</i> , 21(21), 8667-8672.
1	Terzidis, M. A., Tsiaras, V. G., Drosos, N. M., Kasapidou, P. M., Stephanidou-Stephanatou, J., Tsoleridis, C. A., & Kostakis, G. E. (2014). Chromeno [2, 3-c] pyrroles by one-pot multicomponent domino addition–amination reaction. <i>Tetrahedron Letters</i> , <i>55</i> (41), 5601-5604.
li	Teimouri, M. B., Akbari-Moghaddam, P., & Golbaghi, G. (2011). Pseudo- five-component reaction between 3-formylchromones, Meldrum's acid, isocyanides and primary arylamines: diversity-oriented synthesis of novel chromone-containing peptidomimetics. <i>ACS Combinatorial</i>
lii	Akbarzadeh, R., Amanpour, T., & Bazgir, A. (2014). Synthesis of 3-oxo-1,

202

	F-V Lauro et al. / Heterocyclic Letters Vol. 15/ No.1/187-203/Nov-Jan/2025
	4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. <i>Tetrahedron</i> , 70(43), 8142-8147.
liii	Baral, N., Mishra, D. R., Mishra, N. P., Mohapatra, S., Raiguru, B. P., Panda, P., & Kumar, P. S. (2020). Microwave-assisted rapid and efficient synthesis of chromene-fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. <i>Journal of Heterocyclic</i> <i>Chemistry</i> , <i>57</i> (2), 575-589.
liv	Lichitsky, B. V., Melekhina, V. G., Komogortsev, A. N., & Minyaev, M. E. (2020). A new multicomponent approach to the synthesis of substituted furan-2 (5H)-ones containing 4H-chromen-4-one fragment. <i>Tetrahedron Letters</i> , <i>61</i> (49), 152602.
	Received on October 8, 2024.